On the determination of α_s from jet rates in deep inelastic scattering at HERA

Marc Weber
IHEP, University of Heidelberg
for the H1 collaboration

Differential jet rate analysis y_2 averaged over range of $Q^2 > 200 \text{ GeV}^2$

Integrated 2+1 jet rate analysis R_{2+} as a function of Q^2 for fixed y_{cn}

5th International Workshop on Deep Inelastic Scattering and QCD. Chicago, Illinois, USA

Cluster algorithms

JADE like algorithms

- add missing momentum pseudo cluster (proton remant): remove scattered electron cluster
- look for pair of objects i, j with smallest inv. mass m_{ij} different definitions of m_{ij} are possible
- \bullet recombine i and j to a single jet different recombination schemes are possible
- iterate

Eactorizable A, algorithms as used later for the air set rate

- boost clusters to Breit frame: remove scattered electron cluster
- for each cluster i, d_{ip} and d_{ij} are calculated d_{ip} : distance to proton $(d_{ip} = 2E_i^2(1 \cos\theta_{ip})/Q^2)$ d_{ij} : distance to clusters j $(d_{ij} = 2\min(E_i^2, E_j^2)(1 - \cos\theta_{ij})/Q^2)$
- comparing d_{ij} and d_{ij} , cluster i is either assigned to a 'remaint' jet, or i and j are recombined if $d_{ij} < 0.5$

Definition of jet rates

Integrated jet rate

 \bullet clustering ends when no pair i,j with $m_{ij}^2/W^2 < y_{cut}$ is left

(W is the total hadronic mass)

- all jets are considered to be resolvable
- from the number of 2+1 jet events, the integrated jet rate $R_2(Q^2) \equiv \frac{N_{2+1}(Q^2)}{N_{tot}(Q^2)}$ is determined

Differential jet rate

- clustering is stopped when 2+1 jets are left
- for all events $y_2 \equiv \min m_{ij}/W^2$ is calculated (later a cut of $y_2 > 0.01$ is applied)

Outline

Differential jet rate

- description of data by QCD Monte Carlo models (ARIADNE 4.08, LEPTO 6.5)
- where does NLO describe the data?
 comparisons of partons from parton shower/dipole
 QCD Monte Carlos to exact NLO predictions
- unfolding of the differential jet rate
- fit of NLO predictions to unfolded jet rate
- quantitative estimate of systematic error acceptance cuts for detector clusters and partons renormalization scale dependence recombination scheme dependence

Integrated jet rate

• description of $R_{2+1}(Q^2)$ by QCD models (JADE jet algorithm)

Comparison of Data vs Monte Carlo

 $(Q^2>200~{\rm GeV^2},\,W^2>5\,000~{\rm GeV^2},\,y_2>0.01,\,\theta_{clus}>7^\circ)$

- excellent description of data by ARIADNE 4.08 (parameters tuned to HERA data)
- poorer description by LEPTO 6.5

Comparison of Data vs Monte Carlo

 $(Q^2 > 200 \text{ GeV}^2, W^2 > 5000 \text{ GeV}^2, y_2 > 0.01, \theta_{clus} > 7^{\circ})$

Comparison of Data vs Monte Carlo

 $(Q^2 > 200 \text{ GeV}^2, W^2 > 5000 \text{ GeV}^2, y_2 > 0.01, \theta_{elus} > 7^\circ)$

- a full set of complentary jet related observables was checked
- ARIADNE describes y_2 and z_p very well
- ARIADNE and LEPTO are poor in the description of the forward jet's polar angle distribution
- we unfold the data with ARIADNE in the following

(MSRH,
$$\mu_r^2 = \mu_f^2 = Q^2$$
, $y_2 > 0.01$)

- shape of NLO and ARIADNE/LEPTO y_2 distributions agree well agreement of 'normalization' is not expected for extreme values of $\Lambda_{\overline{MS}}^{(4)} = 100$ MeV and 600 MeV
- shape of NLO and ARIADNE/LEPTO agree well in z_p : ARIADNE and LEPTO differ at small z_p

Unfolding method

(Blobel unfolding)

- one step unfolding of hadronization and detector effects
- \bullet y_2^{clus} and y_2^{par} are calculated for each MC event
- a cut of $\theta_{par} > 7^{\circ}$ is applied calculating y_2^{par} to minimize model dependence when extrapolating into forward region
- y_2^{par} is reweighted such that y_2^{clus} fits y_2^{data} (weighting function is found by log-likelyhood method, oscillating solutions are suppressed)
- result consists of: 4 bins of unfolded y_2 distribution plus full information of statistical correlations

Hadronization and detector effects

- rather similar smearing effects are expected by ARI-ADNE and LEPTO
- size of migration excludes unfolding by correction factor method
- sophisticated unfolding method is applied which considers migrations and provides covariance matrix of statistical errors

- ullet differential jet rate is clearly sensitive to value of $lpha_s$
- $\Lambda_{\overline{MS}}^{(4)}$ is fitted to unfolded data considering statistical correlation between bins (unfolding is based on ARIADNE)
- ullet NLO and unfolded data agree excellently for $lpha_s^{fit}$

Study of systematic errors

(variation of θ_{clus} and θ_{par} cuts)

- main motivation for cut $\theta_{clus} > 7^{\circ}$ is limited detector acceptance
- jet rate is unfolded for $\theta_{par} = \theta_{clns}$ (to avoid model dependent extrapolation into forward region)
- ullet identical $heta_{par}$ cut is applied in NLO
- maximum change of $\alpha_s(M_Z)$ is $\pm 2\%$ and $\pm 3\%$
- no significant $\theta_{clus}/\theta_{par}$ dependence of α_s is seen for $\theta_{clus} > 6^{\circ}$

Renormalization scale dependence

- main choice of renormalization scale is $\mu_r^2 = Q^2$ (Note that $Q^2 > 200 \text{ GeV}^2$)
- setting the scale to $\mu_r^2 = 1/4 \, Q^2$ and $\mu_r^2 = 4 \, Q^2$ changes $\alpha_s(M_Z)$ by -4% and +6%
- setting μ_r^2 to sum of jet p_t in the Breit frame changes $\alpha_s(M_Z)$ by +4%
- the renormalization scale ambiguity gives one of the largest individual errors

Different recombination schemes

- different algorithms are qualitatively similar
- largest differences are observed between E scheme and JADE, E_0 , and P scheme algorithms
- E. E_0 . and P algorithms give completely compatible but slightly larger values of α_s

Conclusions

Differential jet races

- y_2 is a good variable to measure α_s
- consistent determination of α_s with some precision is possible
- prominent uncertainties are due to: description of data by QCD models what is the parton level? renormalization scale dependence choice of parton density functions
- working on correct estimate of model dependence with LEPTO 6.5

Outlook

- further reduction of model dependence is desirable
- higher statistics may allow to select more pronounced jets and to reduce hadronization effects
- test of QCD with alternative jet algorithms covering larger/different phase space region
- ullet study of combined y_2 and Q^2 dependence

Integrated jet rate: Data vs Monte Carlo

JADE jer algorithm $y_{em} = 0.02$)

- LEPTO describes Q^2 dependence of R_{2+1} well: ARIADNE shows too flat Q^2 dependence
- LEPTO is the preferred model to correct the data
- control distribution like θ_{jet}, z_p etc. are discribed by LEPTO and ARIADNE however

Summary

- α , can be determined from measurement of both integrated and differential jet rates at HERA
- large spectrum of systematic studies has started with the advent of the flexible NLO programs MEPJET and DISENT
- main difficulties/uncertainties of the analyses are:

 description of data by QCD models
 what is the parton level?
 renormalization scale dependence
 choice of parton density functions
- the best method to determine α_s from jet studies at HERA has yet to be found